Graphs of hyperbolic groups and a limit set intersection theorem
نویسندگان
چکیده
منابع مشابه
The limit set intersection theorem for finitely generated Kleinian groups
The proof of the Theorem proceeds by showing that it holds in some special cases involving Kleinian groups with connected limit sets, and then extending to the general case by using a decomposition argument based on the Klein-Maskit combination theorems and a careful tracking of the limit points resulting from this decomposition. We discuss various well-behaved classes of limit points in Sectio...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولLimit Groups for Relatively Hyperbolic
We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [21] and [22] to this context. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract anR-tree with a nontrivial isomet...
متن کاملCoset Intersection Graphs for Groups
Let H,K be subgroups of G. We investigate the intersection properties of left and right cosets of these subgroups. If H and K are subgroups of G, then G can be partitioned as the disjoint union of all left cosets of H, as well as the disjoint union of all right cosets of K. But how do these two partitions of G intersect each other? Definition 1. Let G be a group, and H a subgroup of G. A left t...
متن کاملHall’s Theorem for limit groups
A celebrated theorem of Marshall Hall Jr. implies that finitely generated free groups are subgroup separable and that all of their finitely generated subgroups are retracts of finite-index subgroups. We use topological techniques inspired by the work of Stallings to prove that all limit groups share these two properties. This answers a question of Sela. Limit groups are finitely presented group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2017
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/13871